
SCOLA - A Users Guide

Andreas Plüschke

November 26, 2002

1 Introduction

As part of the Thesis [Plü02] not only the framework for the Data Type Components
was done, but additionally an interactive tool has been implemented using this
framework for the core data types: SCOLA – Shell for Contextual Logic Applications.
The idea behind this tool is to provide a platform for implementing and testing new
algorithms and enhancements for the core Data Type Components , which can be
used by mathematicians and other scientists. The core features of the tool are:

• Interactive development and research due to the use of scripting languages

• Support for several scripting languages (e. g. BeanShell, JPython, and
NetRexx)

• Concurrent use of the scripting languages

• Object exchange between scripts of one language and between scripts written
in different scripting languages

• Default implementations of the data types ordered set, lattice, and Formal
Context as Data Type Components

These features are possible by using IBM’s Bean Scripting Framework [IBM]
that enables Java applications to embed scripting engines. By implementing adapter
classes this framework allows to integrate further scripting languages. So it is pos-
sible to extend our program by new languages without the need to change any line
of code of the existing classes.

Combining the Bean Scripting Framework1 with the default implementation of
the Data Type – Processors pattern enables the interactive shell to become a pow-
erful tool. Within this chapter we will introduce the application and explain the
main steps using it.

1Although the name of the framework underlines the use of Beans it also works with any Java
object.

1



Figure 1: The SCOLA main window

2 Tutorial

Within the next subsections we will go through the most common used options
while working with the tool. Since one goal implementing this tool is to provide
an application which can be extended, the information given here is related to the
version in October 2002. After finishing the diploma thesis this software project will
be made available as a new open-source project hosted on SourceForge [SCO].

2.1 The User Interface

After starting SCOLA the main graphical user interface is shown centred on the
screen. Figure 1 shows a screen-shot. The main window is divided into three main
parts. The tabs region is marked with circle no. 1, the desktop pane by no. 2, and
the console sub-window labelled by circle no. 3.

The tabs region is for extension purposes. At the moment it shows a single tab
pane, which lists registered Beans. Registered Beans are means provided by the
Bean Scripting Framework to share Java objects between several scripting engines
supported by the framework2. A Bean registered to the BSF manager can be ac-
cessed from any scripting language supported by the framework using Strings as
keys3. However, in future this region shall be used to embed further information

2Further details can be found in [BSF99]
3We will give some more details on this mechanism later.

2



Figure 2: An internal frame for editing a script

panes.
The desktop pane provides a multiple-document interface. It is capable to handle

numerous text windows used to edit the scripts executed within this environment.
Such an internal frame is shown in Figure 2. Besides the purpose as editor the scripts
are also executed from within these windows either using the shortcut CTRL+E, the
pop-up menu – as shown in the figure – or the Run button, which is part of the
info line at the bottom of the window. The execution can be halted using the Stop
button to the right of the Run button.

The third region is the console pane at the bottom of the main window. The
output of every script executed is redirected to this console. Additionally if a script
expects input from stdin4, this data can be entered here. Both the tabs sub-window
and the console pane can be un-docked from the main window and reside in their
own window. To activate this invoke the context specific pop-up menu pressing the
right mouse button either on the console pane or the head-line of the tabs region.
Using the pop-up menu of the console pane the user can additionally set the font
used to print the output; likewise the pop-up menu of the internal frames provides
an item to show a fonts dialog.

2.1.1 Adding further Scripting Engines

Figure 3: The dialog to edit the registered scripting engines

Another customising dialog can be invoked using the Options menu. The dialog

4stdin = standard in; normally this is the user input on a command line

3



Scripting Languages is used to edit the registered scripting engines. Figure 3
shows a screen-shot of the dialog box. Users can use this dialog to add further
scripting engines by specifying the language name, the class name of the Java engine
class, and the used file name extensions for this scripting language. Thus SCOLA
can be adopted easily to support further scripting languages.

2.2 Developing Scripts

The main purpose of SCOLA is – on the one hand – to provide a test platform for
processor classes and completely new Data Type Components and on the other hand
to be used as an experimentation platform for new algorithms and results of research
in the domain of Formal Concept Analysis and Conceptual Knowledge Processing .
Therefore SCOLA enables the user to write and execute scripts.

2.2.1 A First Example

For a first example we will use the BeanShell scripting language, which in fact is the
Java programming language extended by common scripting language conventions
and syntax. Most noticeably the BeanShell interpreter allows dynamic typing of
variables, but it can execute standard Java code, too. Therefore code written for
the BeanShell interpreter can be adopted easily to build a real Java application
later.

print(”Hello, world!”);

Listing .1: Hello, world! written in the BeanShell Java dialect

Listing .1 shows – in good tradition – a program printing Hello, world! onto the
console. To do this start SCOLA and select the menu item New in the File menu.
Selecting this item will bring up a dialog used to select one of the registered scripting
engines. We select bsh for BeanShell; then a new internal frame like the one shown
in Figure 2 will be added to the desktop pane5. Using the new window we can enter
the code and immediately start the program using the Run button. The output
should occur in the console pane.

2.2.2 Using Data Type Components

How can one now use a Data Type Component like the default implementations for
a Formal Context or an Ordered Set? As in plain Java the developer must import
the belonging package. Now by invoking the constructor of a manager class one gets
the reference of a new manager instance, but implicitly the user gets a reference on
a new instance of the belonging data type class as well as references on processor
objects, one for each applicable processor class. Using the manager’s reference the

5Naturally it will contain no lines of code

4



01 : import scola.math.impl.sets.Memory.*;
02 :
03 : \\ create new changeable Ordered Set component
04 : setManager = new MemoryOrderedSetManager(true);
05 :
06 : \\ retrieve set reference
07 : set = setManager.getDataType();
08 :
09 : \\ modify the set
10 : set.link(”Assembler”, ”C”);
11 : set.link(”Assembler”, ”Cobol”);
12 : set.link(”Assembler”,”Algol 60”);
13 : set.link(”Lambda calculus”, ”Algol 60”);
14 : set.link(”Assembler”, ”Fortran”);
15 : set.link(”Fortran”, ”Fortran 77”);
16 : set.link(”Logic calculus”, ”Prolog”);
17 :
18 : \\ show line diagram of ordered set
19 : frame(setManager.getProcessor(”Visualisation”).createCanvas());

Listing .2: Generates an ordered set of some programming languages and shows a
line diagram of it

user can retrieve the data type instance and the several processors. This enables
the users to fulfil their tasks.

Listing .2 shows an example. After importing the package containing the man-
ager class the script creates a new component instance in line 4. The next statement
retrieves the data type reference, which is used to manipulate the ordered set in the
lines 10 until 16. Finally a frame6 is created containing a canvas which shows the
ordered set as a line diagram7 like Figure 4.

Figure 4: The dialog to edit the registered scripting engines

6frame is a special BeanShell command
7Mostly the nodes of the diagram are not placed very well by the automatism. This is because

at the moment only a poor algorithm for node placing is implemented

5



Figure 5: The Single Step Window

2.2.3 Getting more interactively

We can move the nodes of the line diagram using the mouse. However we cannot
add or remove nodes or links. One can open a new BeanShell scripting window
using the New menu item and writing a line like set.link(”C”, ”C++”);. But, after
executing this code, the line diagram will not update. However, when we select line
19 (cf. Listing .2) in the first scripting window and execute it8 via the Run button
another frame will be opened showing the changed ordered set. So we see that the
content of the data type has changed, but the diagram view hasn’t. To fix this we
now replace line 19 of the script shown in Listing .2 with the following statement:

frame(setManager.getProcessor(”Visualisation”).createListeningCanvas());

Executing this statement will bring up a frame showing the line diagram like
before, but now the canvas is linked with the data type and receives events if the
content of the data type changes. Thus the canvas can be updated automatically.
To test this we now use the so-called Single Step Window (Figure 5 shows a screen-
shot of it), which can be opened using the Tools menu. This window allows to
enter single lines of code, which will be executed immediately after the user presses
the Enter key. Additionally the user can select the used scripting language by a
combo box.

2.2.4 Note

Using the Single Step Window and accessing variables in second runs (either from
the same window or from another window using the same scripting language) is
not possible for all scripting languages supported by the Bean Scripting Framework.
Rather it depends on the scripting engines which delegate the execution. For exam-
ple BeanShell uses an interpreter, which preserves the state between a sequence of
invocations, whereas other engines – like the NetRexx engine – compile the script
and execute it afterwards. Thus the state cannot be preserved. For further infor-
mation users should read the documentation coming with the different engines.

2.2.5 Declaring and Registering Beans

IBM’s Bean Scripting Framework provides a mechanism which enables scripts to
exchange objects between several scripting engines and executions of scripts. This
mechanism allows to avoid the problems mentioned above and can be used for any
Java object.

8By selecting text we can execute only parts of a script.

6



Therefore the framework uses an object registry, which maps names (represented
by Strings) to objects. Additionally the framework distinguishes between two kinds
of announcing a BeanAs already mentioned, any Java object can be used: declaring
and registering. Thereby an object, which has been declared, will automatically be
registered, but not the other way round. This affects scripts. Declared objects can
be accessed directly by its defined name in the registry, whereas registered objects
must be retrieved first by using a language dependant mechanism.

What are the reasons for a second mechanism besides declaring objects? The
answer is due to technical reasons. The authors of the framework allow scripting
engines not to support the declaring mechanism. For declaring the documentation
says: engines are expected to make declared beans “pre-available” in the scripts as
far as possible. However, it is not a must for engines to implement this feature. Thus
registering an object provides more flexibility for authors of scripting engines because
the exact mechanism, how a registered object can be retrieved, is not specified.

A feature of SCOLA is the Beans tab as part of the tabs region. It provides a
list of all declared and registered objects. To make the difference visible registered
objects are shown with additional braces on the list. To test the exchange of objects
we can do the following steps after we have executed Script .2: first we register the
ordered set instance to the Bean Scripting Framework. For this purpose we enter
bsf.registerBean(”set”, set) in the Single Step Window and execute this as BeanShell
script9. In the Beans tab a new entry (set) should occur. Now we change the
scripting language to jpython and enter print bsf.lookupBean(”set”). Executing this
code fragment results in the following output on the console pane:

scola.math.impl.sets.Memory.MemoryRWOrderedSet@21e5f0 :
C: [(Assembler), ()]
Assembler: [(), (C, Cobol, Algol 60, Fortran)]
Cobol: [(Assembler), ()]
Algol 60: [(Assembler, Lambda calculus), ()]
Lambda calculus: [(), (Algol 60)]
Fortran: [(Assembler), (Fortran 77)]
Fortran 77: [(Fortran), ()]
Prolog: [(Logic calculus), ()]
Logic calculus: [(), (Prolog)]

Table 1: Textual representation of an OrderedSet instance

This is a textual representation of the ordered set we created using the Listing .2.
However, executing print set in the Single Step Window as JPython code will result
in an exception. To change this we run

bsf.declareBean(”set”, set, scola.math.sets.RWOrderedSet.class)

as BeanShell script and now in the Beans tab the entry (set) will be replaced by

9Select bsh in the combo box

7



set10. Within any scripting language supporting the declaring mechanism it should
now be possible to access the ordered set instance using the variable name set.

2.2.6 Predefined Beans and Helper Classes

After starting SCOLA the Beans tab shows already two entries, console and windows.
Both provide methods to change the user interface programmatically. The variable
windows allows to access all opened internal frames, whereas console enables the user
to access the console pane (e. g. to clear it).

Additionally a helper class is made available by the package scola.tools.shell.helper.
The class Window allows to create JFrame and JDialog instances more flexible than
the BeanShell command frame we used in Listing .2. A further feature provided by
this class is a small browser, which can be used to show JavaDoc HTML pages. Ad-
ditional information for the program come with some example scripts demonstrating
several features of SCOLA and how to use the program.

References

[BSF99] IBM TJ Watson Research Center, Hawthorne, NY 10532. Bean Scripting
Framework User’s Guide, December 1999. Part of the documentation of
[IBM].

[IBM] Bean Scripting Framework.
http://oss.software.ibm.com/developerworks/projects/bsf.

[Plü02] Andreas Plüschke. Design of a component based framework for conceptual
knowledge processing. Diploma thesis, Darmstadt University of Technol-
ogy, 2002.

[SCO] SCOLA – Shell for Contextual Logic Applications.
http://sourceforge.net/projects/scola.

10Now without braces to signalise that this name is used for a declared object

8

http://oss.software.ibm.com/developerworks/projects/bsf
http://sourceforge.net/projects/scola

	Introduction
	Tutorial
	The User Interface
	Adding further Scripting Engines

	Developing Scripts
	A First Example
	Using Data Type Components
	Getting more interactively
	Note
	Declaring and Registering Beans
	Predefined Beans and Helper Classes



